

10 Compiler I: Syntax Analysis

Neither can embellishments of language be found without arrangement and expression of

thoughts, nor can thoughts be made to shine without the light of language.

—Cicero (106–43 BC)

The previous chapter introduced Jack—a simple object-based programming lan-

guage whose syntax resembles that of Java and C#. In this chapter we start building

a compiler for the Jack language. A compiler is a program that translates programs

from a source language into a target language. The translation process, known as

compilation, is conceptually based on two distinct tasks. First, we have to understand

the syntax of the source program, and, from it, uncover the program’s semantics. For

example, the parsing of the code can reveal that the program seeks to declare an

array or manipulate an object. This information enables us to reconstruct the pro-

gram’s logic using the syntax of the target language. The first task, typically called

syntax analysis, is described in this chapter; the second task—code generation—is

taken up in chapter 11.

How can we tell that a compiler is capable of ‘‘understanding’’ the language’s

syntax? Well, as long as the code generated by the compiler is doing what it is sup-

posed to do, we can optimistically assume that the compiler is operating properly.

Yet in this chapter we build only the syntax analyzer module of the compiler, with

no code generation capabilities. If we wish to unit-test the syntax analyzer in isola-

tion, we have to contrive some passive way to demonstrate that it ‘‘understands’’ the

source program. Our solution is to have the syntax analyzer output an XML file

whose format reflects the syntactic structure of the input program. By inspecting the

generated XML output, we should be able to ascertain that the analyzer is parsing

input programs correctly.

The chapter starts with a Background section that surveys the minimal set of con-

cepts necessary for building a syntax analyzer: lexical analysis, context-free gram-

mars, parse trees, and recursive descent algorithms for building them. This sets the

stage for a Specification section that presents the formal grammar of the Jack lan-

guage and the format of the output that a Jack analyzer is expected to generate. The

Implementation section proposes a software architecture for constructing a Jack

analyzer, along with a suggested API. As usual, the final Project section gives step-

by-step instructions and test programs for actually building and testing the syntax

analyzer. In the next chapter, this analyzer will be extended into a full-scale compiler.

Writing a compiler from scratch is a task that brings to bear several fundamental

topics in computer science. It requires an understanding of language translation and

parsing techniques, use of classical data structures like trees and hash tables, and

application of sophisticated recursive compilation algorithms. For all these reasons,

writing a compiler is also a challenging task. However, by splitting the compiler’s

construction into two separate projects (or actually four, counting the VM projects

as well), and by allowing the modular development and unit-testing of each part in

isolation, we have turned the compiler’s development into a surprisingly manageable

and self-contained activity.

Why should you go through the trouble of building a compiler? First, a hands-on

grasp of compilation internals will turn you into a significantly better high-level pro-

grammer. Second, the same types of rules and grammars used for describing pro-

gramming languages are also used for specifying the syntax of data sets in diverse

applications ranging from computer graphics to database management to communi-

cations protocols to bioinformatics. Thus, while most programmers will not have to

develop compilers in their careers, it is very likely that they will be required to parse

and manipulate files of some complex syntax. These tasks will employ the same

concepts and techniques used in the parsing of programming languages, as described

in this chapter.

10.1 Background

A typical compiler consists of two main modules: syntax analysis and code genera-

tion. The syntax analysis task is usually divided further into two modules: tokenizing,

or grouping of input characters into language atoms, and parsing, or attempting to

match the resulting atoms stream to the syntax rules of the underlying language.

Note that these activities are completely independent of the target language into

which we seek to translate the source program. Since in this chapter we don’t deal

with code generation, we have chosen to have the syntax analyzer output the parsed

structure of the compiled program as an XML file. This decision has two benefits.

200 Chapter 10

First, the XML file can be easily viewed in any Web browser, demonstrating that

the syntax analyzer is parsing source programs correctly. Second, the requirement to

output this file explicitly forces us to write the syntax analyzer in a software archi-

tecture that can be later morphed into a full-scale compiler. In particular, in the next

chapter we will simply replace the routines that generate the passive XML code with

routines that generate executable VM code, leaving the rest of the compiler’s archi-

tecture intact (see figure 10.1).

In this chapter we focus only on the syntax analyzer module of the compiler,

whose job is ‘‘understanding the structure of a program.’’ This notion needs some

explanation. When humans read a computer program, they immediately recognize

the program’s structure. They can identify where classes and methods begin and

end, what are declarations, what are statements, what are expressions and how they

are built, and so on. This understanding is not trivial, since it requires an ability to

identify and classify nested patterns: In a typical program, classes contain methods

that contain statements that contain other statements that contain expressions, and

so on. In order to recognize these language constructs correctly, human cognition

must recursively map them on the range of textual patterns permitted by the lan-

guage syntax.

When it comes to understanding a natural language like English, the question of

how syntax rules are represented in the human brain and whether they are innate or

acquired is a subject of intense debate. However, if we limit our attention to formal

languages—artifacts whose simplicity hardly justifies the title ‘‘language’’—we know

precisely how to formalize their syntactic structure. In particular, programming

Jack
Program

Toke-
nizer Parser

Code
Gene-
ration

Syntax Analyzer

Jack Compiler

VM
code

XML
code

(Project 10)

(Project 11)

Figure 10.1 The Jack Compiler. The project in chapter 10 is an intermediate step, designed to
localize the development and unit-testing of the syntax analyzer module.

201 Compiler I: Syntax Analysis

languages are usually described using a set of rules called context-free grammar. To

understand—parse—a given program means to determine the exact correspondence

between the program’s text and the grammar’s rules. In order to do so, we first have

to transform the program’s text into a list of tokens, as we now describe.

10.1.1 Lexical Analysis

In its plainest syntactic form, a program is simply a sequence of characters, stored

in a text file. The first step in the syntax analysis of a program is to group the char-

acters into tokens (as defined by the language syntax), while ignoring white space and

comments. This step is usually called lexical analysis, scanning, or tokenizing. Once a

program has been tokenized, the tokens (rather than the characters) are viewed as its

basic atoms, and the tokens stream becomes the main input of the compiler. Figure

10.2 illustrates the tokenizing of a typical code fragment, taken from a C or Java

program.

As seen in figure 10.2, tokens fall into distinct categories, or types: while is a

keyword, count is an identifier, <= is an operator, and so on. In general, each pro-

gramming language specifies the types of tokens it allows, as well as the exact syntax

rules for combining them into valid programmatic structures. For example, some

languages may specify that ‘‘++’’ is a valid operator token, while other languages

may not. In the latter case, an expression containing two consecutive ‘‘+’’ characters

will be rendered invalid by the compiler.

C code Tokens

while (count <= 100) { /** some loop */

count++;

// Body of while continues

...

tokenizing

while

(

count

<=

100

)

{

count

++

;

...

Figure 10.2 Lexical analysis.

202 Chapter 10

10.1.2 Grammars

Once we have lexically analyzed a program into a stream of tokens, we now face the

more challenging task of parsing the tokens stream into a formal structure. In other

words, we have to figure out how to group the tokens into language constructs like

variable declarations, statements, expressions, and so on. These grouping and classi-

fication tasks can be done by attempting to match the tokens stream on some pre-

defined set of rules known as a grammar.

Almost all programming languages, as well as most other formal languages used

for describing the syntax of complex file types, can be specified using formalisms

known as context-free grammars. A context-free grammar is a set of rules specifying

how syntactic elements in some language can be formed from simpler ones. For ex-

ample, the Java grammar allows us to combine the atoms 100,count, and <= into

the expression count<=100. In a similar fashion, the Java grammar allows us to

ascertain that the text count<=100 is a valid Java expression. Indeed, each grammar

has a dual perspective. From a declarative standpoint, the grammar specifies al-

lowable ways to combine tokens, also called terminals, into higher-level syntactic

elements, also called non-terminals. From an analytic standpoint, the grammar is a

prescription for doing the reverse: parsing a given input (set of tokens resulting from

the tokenizing phase) into non-terminals, lower-level non-terminals, and eventually

terminals that cannot be decomposed any further. Figure 10.3 gives an example of a

typical grammar.

In this chapter we specify grammars using the following notation: Terminal ele-

ments appear in bold text enclosed in single quotes, and non-terminal elements in

regular font. When there is more than one way to parse a non-terminal, the ‘‘|’’ no-

tation is used to list the alternative possibilities. Thus, figure 10.3 specifies that a

statement can be either a whileStatement, or an ifStatement, and so on. Typically,

grammar rules are highly recursive, and figure 10.3 is no exception. For example,

statementSequence is either null, or a single statement followed by a semicolon and a

statementSequence. This recursive definition can accommodate a sequence of 0, 1, 2,

or any other positive number of semicolon-separated statements. As an exercise, the

reader may use figure 10.3 to ascertain that the text appearing in the right side of the

figure constitutes a valid C code. You may start by trying to match the entire text

with statement, and work your way from there.

10.1.3 Parsing

The act of checking whether a grammar ‘‘accepts’’ an input text as valid is called

parsing. As we noted earlier, parsing a given text means determining the exact

203 Compiler I: Syntax Analysis

correspondence between the text and the rules of a given grammar. Since the gram-

mar rules are hierarchical, the output generated by the parser can be described in a

tree-oriented data structure called a parse tree or a derivation tree. Figure 10.4 gives a

typical example.

Note that as a side effect of the parsing process, the entire syntactic structure of the

input text is uncovered. Some compilers represent this tree by an explicit data struc-

ture that is further used for code generation and error reporting. Other compilers

(including the one that we will build) represent the program’s structure implicitly,

generating code and reporting errors on the fly. Such compilers don’t have to hold

the entire program structure in memory, but only the subtree associated with the

presently parsed element. More about this later.

Recursive Descent Parsing There are several algorithms for constructing parse trees.

The top-down approach, also called recursive descent parsing, attempts to parse the

tokens stream recursively, using the nested structure prescribed by the language

grammar. Let us consider how a parser program that implements this strategy can be

written. For every rule in the grammar describing a non-terminal, we can equip the

parser program with a recursive routine designed to parse that non-terminal. If the

non-terminal consists of terminal atoms only, the routine can simply process them.

...

statement: whileStatement

| ifStatement

| ... // Other statement possibilities

| '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'

statement

ifStatement: ... // Definition of "if"

statementSequence: '' // empty sequence (null)

| statement ';'

statementSequence

expression: ... // Definition of "expression"

... // More definitions follow

while (expression) {

statement;

statement;

while (expression) {

while(expression)

statement;

statement;

}

}

Figure 10.3 A subset of the C language grammar (left) and a sample code segment accepted
by this grammar (right).

204 Chapter 10

C code C language grammar (partial)

while (count<=100) {

count++;

// ...

statement: whileStatement | ifStatement

| ... | '{' statementSequence '}'

whileStatement: 'while' '(' expression ')'

statement

ifStatement: ... // Definition of "if"

statementSequence: '' // Null

| statement ';' statementSequence

expression: ... // Definition of "expression"

Tokenized

(parser’s input):

while

(

count

<=

100

)

{

count

++

;

...

while . . .()count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

Figure 10.4 Parse tree of a program segment according to a grammar segment. Solid tri-
angles represent lower-level parse trees.

205 Compiler I: Syntax Analysis

Otherwise, for every non-terminal building block in the rule’s right-hand side, the

routine can recursively call the routine designed to parse this non-terminal. The pro-

cess will continue recursively, until all the terminal atoms have been reached and

processed.

To illustrate, suppose we have to write a recursive descent parser that follows the

grammar from figure 10.3. Since the grammar has five derivation rules, the parser

implementation can consist of five major routines: parseStatement(), parse-

WhileStatement(), parseIfStatement(), parseStatementSequence(), and

parseExpression(). The parsing logic of these routines should follow the syntactic

patterns appearing in the right-hand sides of the corresponding grammar rules. Thus

parseStatement() should probably start its processing by determining what is the

first token in the input. Having established the token’s identity, the routine could

determine which statement we are in, and then call the parsing routine associated

with this statement type.

For example, if the input stream were that depicted in figure 10.4, the routine

will establish that the first token is while, then call the parseWhileStatement()

routine. According to the corresponding grammar rule, this routine should next

attempt to read the terminals ‘‘while’’ and ‘‘(’’, and then call parseExpression()

to parse the non-terminal expression. After parseExpression() would return

(having parsed the ‘‘count<=100’’ sequence in our example), the grammar dictates

that parseWhileStatement() should attempt to read the terminal ‘‘)’’ and then

recursively call parseStatement(). This call would continue recursively, until at

some point only terminal atoms are read. Clearly, the same logic can also be used for

detecting syntax errors in the source program. The better the compiler, the better will

be its error diagnostics.

LL(0) Grammars Recursive parsing algorithms are simple and elegant. The

only possible complication arises when there are several alternatives for parsing

non-terminals. For example, when parseStatement() attempts to parse a state-

ment, it does not know in advance whether this statement is a while-statement, an

if-statement, or a bunch of statements enclosed in curly brackets. The span of pos-

sibilities is determined by the grammar, and in some cases it is easy to tell which al-

ternative we are in. For example, consider figure 10.3. If the first token is ‘‘while,’’ it

is clear that we are faced with a while statement, since this is the only alternative in

the grammar that starts with a ‘‘while’’ token. This observation can be generalized

as follows: whenever a non-terminal has several alternative derivation rules, the first

token suffices to resolve without ambiguity which rule to use. Grammars that have

206 Chapter 10

this property are called LL(0). These grammars can be handled simply and neatly

by recursive descent algorithms.

When the first token does not suffice to resolve the element’s type, it is possible

that a ‘‘look ahead’’ to the next token will settle the dilemma. Such parsing can

obviously be done, but as we need to look ahead at more and more tokens down the

stream, things start getting complicated. The Jack language grammar, which we now

turn to present, is almost LL(0), and thus it can be handled rather simply by a

recursive descent parser. The only exception is the parsing of expressions, where just

a little look ahead is necessary.

10.2 Specification

This section has two distinct parts. First, we specify the Jack language’s grammar.

Next, we specify a syntax analyzer designed to parse programs according to this

grammar.

10.2.1 The Jack Language Grammar

The functional specification of the Jack language given in chapter 9 was aimed at

Jack programmers. We now turn to giving a formal specification of the language,

aimed at Jack compiler developers. Our grammar specification is based on the fol-

lowing conventions:

‘xxx’: quoted boldface is used for tokens that appear verbatim (‘‘terminals’’);

xxx: regular typeface is used for names of language constructs (‘‘non-terminals’’);

(): parentheses are used for grouping of language constructs;

xjy: indicates that either x or y can appear;

x?: indicates that x appears 0 or 1 times;

x*: indicates that x appears 0 or more times.

The Jack language syntax is given in figure 10.5, using the preceding conventions.

10.2.2 A Syntax Analyzer for the Jack Language

The main purpose of the syntax analyzer is to read a Jack program and ‘‘under-

stand’’ its syntactic structure according to the Jack grammar. By understanding, we

207 Compiler I: Syntax Analysis

Lexical elements: The Jack language includes five types of terminal elements (tokens):

keyword: 'class' | 'constructor' | 'function' |

'method' | 'field' | 'static' | 'var' |

'int' | 'char' | 'boolean' | 'void' | 'true' |

'false' | 'null' | 'this' | 'let' | 'do' |

'if' | 'else' | 'while' | 'return'

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '.' |

',' | ';' | '+' | '-' | '*' | '/' | '&' |

'|' | '<' | '>' | '=' | '~'

integerConstant: A decimal number in the range 0 .. 32767.

StringConstant '"""' A sequence of Unicode characters not including double quote or

newline '"""'

identifier: A sequence of letters, digits, and underscore ('_') not starting with a

digit.

Program structure: A Jack program is a collection of classes, each appearing in a separate file.

The compilation unit is a class. A class is a sequence of tokens structured

according to the following context free syntax:

class: 'class' className '{' classVarDec* subroutineDec* '}'

classVarDec: ('static' | 'field') type varName (',' varName)* ';'

type: 'int' | 'char' | 'boolean' | className

subroutineDec: ('constructor' | 'function' | 'method')

('void' | type) subroutineName '(' parameterList ')'

subroutineBody

parameterList: ((type varName) (',' type varName)*)?

subroutineBody: '{' varDec* statements '}'

varDec: 'var' type varName (',' varName)* ';'

className: identifier

subroutineName: identifier

varName: identifier

Figure 10.5 Complete grammar of the Jack language.

208 Chapter 10

Statements:

statements: statement*

statement: letStatement | ifStatement | whileStatement |

doStatement | returnStatement

letStatement: 'let' varName ('[' expression ']')? '=' expression ';'

ifStatement: 'if' '(' expression ')' '{' statements '}'

('else' '{' statements '}')?

whileStatement: 'while' '(' expression ')' '{' statements '}'

doStatement: 'do' subroutineCall ';'

ReturnStatement 'return' expression? ';'

Expressions:

expression: term (op term)*

term: integerConstant | stringConstant | keywordConstant |

varName | varName '[' expression ']' | subroutineCall |

'(' expression ')' | unaryOp term

subroutineCall: subroutineName '(' expressionList ')' | (className |

varName) '.' subroutineName '(' expressionList ')'

expressionList: (expression (',' expression)*)?

op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '='

unaryOp: '-' | '~'

KeywordConstant: 'true' | 'false' | 'null' | 'this'

Figure 10.5 (continued)

209 Compiler I: Syntax Analysis

mean that the syntax analyzer must know, at each point in the parsing process, the

structural identity of the program element that it is currently reading, namely,

whether it is an expression, a statement, a variable name, and so on. The syntax ana-

lyzer must possess this syntactic knowledge in a complete recursive sense. Without it,

it will be impossible to move on to code generation—the ultimate goal of the overall

compiler.

The fact that the syntax analyzer ‘‘understands’’ the programmatic structure of

the input can be demonstrated by having it print the processed text in some well-

structured and easy-to-read format. One can think of several ways to cook up such a

demonstration. In this book, we decided to have the syntax analyzer output an XML

file whose marked-up format reflects the syntactic structure of the underlying pro-

gram. By viewing this XML output file—a task that can be conveniently done with

any Web browser—one should be able to tell right away if the syntax analyzer is

doing the job or not.

10.2.3 The Syntax Analyzer’s Input

The Jack syntax analyzer accepts a single command line parameter, as follows:

prompt> JackAnalyzer source

Where source is either a file name of the form Xxx.jack (the extension is

mandatory) or a directory name containing one or more .jack files (in which case

there is no extension). The syntax analyzer compiles the Xxx.jack file into a file

named Xxx.xml, created in the same directory in which the source file is located. If

source is a directory name, each .jack file located in it is compiled, creating a cor-

responding .xml file in the same directory.

Each Xxx.jack file is a stream of characters. This stream should be tokenized

into a stream of tokens according to the rules specified by the lexical elements of the

Jack language (see figure 10.5, top). The tokens may be separated by an arbitrary

number of space characters, newline characters, and comments, which are ignored.

Comments are of the standard formats /* comment until closing */, /** API

comment */, and // comment to end of line.

10.2.4 The Syntax Analyzer’s Output

Recall that the development of the Jack compiler is split into two stages (see figure

10.1), starting with the syntax analyzer. In this chapter, we want the syntax analyzer

210 Chapter 10

to emit an XML description of the input program, as illustrated in figure 10.6. In

order to do so, the syntax analyzer has to recognize two major types of language

constructs: terminal and non-terminal elements. These constructs are handled as

follows.

Non-Terminals Whenever a non-terminal language element of type xxx is encoun-

tered, the syntax analyzer should generate the marked-up output:

hxxxi
Recursive code for the body of the xxx element.

h/xxxi

Where xxx is one of the following (and only the following) non-terminals of the Jack

grammar:

m class, classVarDec, subroutineDec, parameterList,

subroutineBody, varDec;

m statements, whileSatement, ifStatement, returnStatement,

letStatement, doStatement;

m expression, term, expressionList.

Terminals Whenever a terminal language element of type xxx is encountered, the

syntax analyzer should generate the marked-up output:

hxxxi terminal h/xxxi

Where xxx is one of the five token types recognized by the Jack language (as

specified in the Jack grammar’s ‘‘lexical elements’’ section), namely, keyword,

symbol, integerConstant, stringConstant, or identifier.

Figure 10.6, which shows the analyzer’s output, should evoke some sense of déjà

vu. Earlier in the chapter we noted that the structure of a program can be analyzed

into a parse tree. And indeed, XML output is simply a textual description of a tree.

In particular, note that in a parse tree, the non-terminal nodes form a ‘‘super struc-

ture’’ that describes how the tree’s terminal nodes (the tokens) are grouped into lan-

guage constructs. This pattern is mirrored in the XML output, where non-terminal

XML elements describe how terminal XML items are arranged. In a similar fashion,

the tokens generated by the tokenizer form the lowest level of the XML output, just

as they form the terminal leaves of the program’s parse tree.

211 Compiler I: Syntax Analysis

Analyzer’s input (Jack code) Analyzer’s output (XML code)

Class Bar {

method Fraction foo(int y) {

var int temp; // a variable

let temp = (xxx+12)*-63;

...

<class>

<keyword> class </keyword>

<identifier> Bar </identifier>

<symbol> { </symbol>

<subroutineDec>

<keyword> method </keyword>

<identifier> Fraction </identifier>

<identifier> foo </identifier>

<symbol> (</symbol>

<parameterList>

<keyword> int </keyword>

<identifier> y </identifier>

</parameterList>

<symbol>) </symbol>

<subroutineBody>

<symbol> { </symbol>

<varDec>

<keyword> var </keyword>

<keyword> int </keyword>

<identifier> temp </identifier>

<symbol> ; </symbol>

</varDec>

<statements>

<letStatement>

<keyword> let </keyword>

<identifier> temp </identifier>

<symbol> = </symbol>

<expression>

...

</expression>

<symbol> ; </symbol>

...

Syntax Analyzer

Figure 10.6 Jack Analyzer in action.

212 Chapter 10

Code Generation We have just finished specifying the analyzer’s XML output. In

the next chapter we replace the software that generates this output with software that

generates executable VM code, leading to a full-scale Jack compiler.

10.3 Implementation

Section 10.2 gave all the information necessary to build a syntax analyzer for the

Jack language, without any implementation details. This section describes a pro-

posed software architecture for the syntax analyzer. We suggest arranging the im-

plementation in three modules:

m JackAnalyzer: top-level driver that sets up and invokes the other modules;

m JackTokenizer: tokenizer;

m CompilationEngine: recursive top-down parser.

These modules are designed to handle the language’s syntax. In the next chapter

we extend this architecture with two additional modules that handle the language’s

semantics: a symbol table and a VM-code writer. This will complete the construction

of a full-scale compiler for the Jack language. Since the module that drives the pars-

ing process in this project will also drive the overall compilation in the next project,

we call it CompilationEngine.

10.3.1 The JackAnalyzer Module

The analyzer program operates on a given source, where source is either a file name

of the form Xxx.jack or a directory name containing one or more such files. For

each source Xxx.jack file, the analyzer goes through the following logic:

1. Create a JackTokenizer from the Xxx.jack input file.

2. Create an output file called Xxx.xml and prepare it for writing.

3. Use the CompilationEngine to compile the input JackTokenizer into the output

file.

213 Compiler I: Syntax Analysis

10.3.2 The JackTokenizer Module

JackTokenizer: Removes all comments and white space from the input stream and

breaks it into Jack-language tokens, as specified by the Jack grammar.

Routine Arguments Returns Function

Constructor input file/

stream

— Opens the input file/stream and gets

ready to tokenize it.

hasMoreTokens — Boolean Do we have more tokens in the input?

advance — — Gets the next token from the input

and makes it the current token. This

method should only be called if

hasMoreTokens() is true. Initially

there is no current token.

tokenType — KEYWORD, SYMBOL,

IDENTIFIER, INT_CONST,

STRING_CONST

Returns the type of the current token.

keyWord — CLASS, METHOD, FUNCTION,

CONSTRUCTOR, INT,

BOOLEAN, CHAR, VOID,

VAR, STATIC, FIELD, LET,

DO, IF, ELSE, WHILE,

RETURN, TRUE, FALSE,

NULL, THIS

Returns the keyword which is the

current token. Should be called only

when tokenType() is KEYWORD.

symbol — Char Returns the character which is the

current token. Should be called only

when tokenType() is SYMBOL.

identifier — String Returns the identifier which is the

current token. Should be called only

when tokenType() is IDENTIFIER.

intVal Int Returns the integer value of the

current token. Should be called only

when tokenType() is INT_CONST.

214 Chapter 10

Routine Arguments Returns Function

stringVal String Returns the string value of the current

token, without the double quotes.

Should be called only when

tokenType() is STRING_CONST.

10.3.3 The CompilationEngine Module

CompilationEngine: Effects the actual compilation output. Gets its input from a

JackTokenizer and emits its parsed structure into an output file/stream. The

output is generated by a series of compilexxx() routines, one for every syntactic

element xxx of the Jack grammar. The contract between these routines is that each

compilexxx() routine should read the syntactic construct xxx from the input,

advance() the tokenizer exactly beyond xxx, and output the parsing of xxx. Thus,

compilexxx() may only be called if indeed xxx is the next syntactic element of the

input.

In the first version of the compiler, described in chapter 10, this module emits a

structured printout of the code, wrapped in XML tags. In the final version of the

compiler, described in chapter 11, this module generates executable VM code. In

both cases, the parsing logic and module API are exactly the same.

Routine Arguments Returns Function

Constructor Input

stream/file

Output

stream/file

— Creates a new compilation

engine with the given input and

output. The next routine called

must be compileClass().

CompileClass — — Compiles a complete class.

CompileClassVarDec — — Compiles a static declaration or

a field declaration.

CompileSubroutine — — Compiles a complete method,

function, or constructor.

compileParameterList — — Compiles a (possibly empty)

parameter list, not including the

enclosing ‘‘()’’.

215 Compiler I: Syntax Analysis

Routine Arguments Returns Function

compileVarDec — — Compiles a var declaration.

compileStatements — — Compiles a sequence of state-

ments, not including the

enclosing ‘‘{}’’.

compileDo — — Compiles a do statement.

compileLet — — Compiles a let statement.

compileWhile — — Compiles a while statement.

compileReturn — — Compiles a return statement.

compileIf — — Compiles an if statement, pos-

sibly with a trailing else clause.

CompileExpression — — Compiles an expression.

CompileTerm — — Compiles a term. This routine is

faced with a slight difficulty

when trying to decide between

some of the alternative parsing

rules. Specifically, if the current

token is an identifier, the routine

must distinguish between a

variable, an array entry, and a

subroutine call. A single look-

ahead token, which may be one

of ‘‘[’’, ‘‘(’’, or ‘‘.’’ suffices to dis-

tinguish between the three possi-

bilities. Any other token is not

part of this term and should not

be advanced over.

CompileExpressionList — — Compiles a (possibly empty)

comma-separated list of

expressions.

216 Chapter 10

10.4 Perspective

Although it is convenient to describe the structure of computer programs using parse

trees and XML files, it’s important to understand that compilers don’t necessarily

have to maintain such data structures explicitly. For example, the parsing algorithm

described in this chapter runs ‘‘on-line,’’ meaning that it parses the input as it reads

it and does not keep the entire input program in memory. There are essentially

two types of strategies for doing such parsing. The simpler strategy works top-down,

and this is the one presented in this chapter. The more advanced algorithms, which

work bottom-up, are not described here since they require some elaboration of

theory.

Indeed, in this chapter we have sidestepped almost all the formal language theory

studied in typical compilation courses. We were able to do so by choosing a very

simple syntax for the Jack language—a syntax that can be easily compiled using

recursive descent techniques. For example, the Jack grammar does not mandate the

usual operator precedence in expressions evaluation (multiplication before addition,

and so on). This has enabled us to avoid parsing algorithms that are more powerful

yet much more technical than the elegant top-down parsing techniques presented in

the chapter.

Another topic that was hardly mentioned in the chapter is how the syntax of

languages is specified in general. There is a rich theory called formal languages that

discusses properties of classes of languages, as well as metalanguages and formalisms

for specifying them. This is also the point where computer science meets the study of

human languages, leading to the vibrant area of research known as computational

linguistics.

Finally, it is worth mentioning that syntax analyzers are not stand-alone programs,

and are rarely written from scratch. Instead, programmers usually build tokenizers

and parsers using a variety of ‘‘compiler generator’’ tools like LEX (for lexical anal-

ysis) and YACC (for Yet Another Compiler Compiler). These utilities receive as input

a context-free grammar, and produce as output syntax analysis code capable of

tokenizing and parsing programs written in that grammar. The generated code can

then be customized to fit the specific compilation needs of the application at hand.

Following the ‘‘show me’’ spirit of this book, we have chosen not to use such black

boxes in the implementation of our compiler, but rather to build everything from the

ground up.

217 Compiler I: Syntax Analysis

10.5 Project

The compiler construction spans two projects: 10 and 11. This section describes how

to build the syntax analyzer described in this chapter. In the next chapter we extend

this analyzer into a full-scale Jack compiler.

Objective Build a syntax analyzer that parses Jack programs according to the Jack

grammar. The analyzer’s output should be written in XML, as defined in the speci-

fication section.

Resources The main tool in this project is the programming language in which you

will implement the syntax analyzer. You will also need the supplied TextComparer

utility, which allows comparing the output files generated by your analyzer to the

compare files supplied by us. You may also want to inspect the generated and sup-

plied output files using an XML viewer (any standard Web browser should do the

job).

Contract Write the syntax analyzer program in two stages: tokenizing and parsing.

Use it to parse all the .jack files mentioned here. For each source .jack file, your

analyzer should generate an .xml output file. The generated files should be identical

to the .xml compare-files supplied by us.

Test Programs

The syntax analyzer’s job is to parse programs written in the Jack language. Thus, a

reasonable way to test your analyzer it is to have it parse several representative Jack

programs. We supply two such test programs, called Square Dance and Array Test.

The former includes all the features of the Jack language except for array processing,

which appears in the latter. We also provide a simpler version of the Square Dance

program, as explained in what follows.

For each one of the three programs, we supply all the Jack source files comprising

the program. For each such Xxx.jack file, we supply two compare files named

XxxT.xml and Xxx.xml. These files contain, respectively, the output that should be

produced by a tokenizer and by a parser applied to Xxx.jack.

m Square Dance (projects/10/Square): A trivial interactive ‘‘game’’ that en-

ables moving a black square around the screen using the keyboard’s four arrow keys.

218 Chapter 10

m Expressionless Square Dance (projects/10/ExpressionlessSquare): An

identical copy of Square Dance, except that each expression in the original program

is replaced with a single identifier (some variable name in scope). For example, the

Square class has a method that increases the size of the graphical square object by 2

pixels, as long as the new size does not cause the square image to spill over the

screen’s boundaries. The code of this method is as follows.

Square Class Code ExpressionlessSquare Class Code

method void incSize() {

if (((y + size) < 254) &

((x + size) < 510) {

do erase();

let size = size + 2;

do draw();

}

return;

}

method void incSize() {

if (x) {

do erase();

let size=size;

do draw();

}

return;

}

Note that the replacement of expressions with variables has resulted in a nonsensical

program that cannot be compiled by the supplied Jack compiler. Still, it follows all

the Jack grammar rules. The expressionless class files have the same names as those

of the original files, but they are located in a separate directory.

m Array test (projects/10/ArrayTest): A single-class Jack program that com-

putes the average of a user-supplied sequence of integers using array notation and

array manipulation.

Experimenting with the Test Programs If you want, you can compile the Square

Dance and ArrayTest programs using the supplied Jack compiler, then use the sup-

plied VM emulator to run the compiled code. These activities are completely irrele-

vant to this project, but they serve to highlight the fact that the test programs are not

just plain text (although this is perhaps the best way to think about them in the con-

text of this project).

Stage 1: Tokenizer

First, implement the JackTokenizer module specified in section 10.3. When applied

to a text file containing Jack code, the tokenizer should produce a list of tokens, each

219 Compiler I: Syntax Analysis

printed in a separate line along with its classification: symbol, keyword, identifier, in-

teger constant, or string constant. The classification should be recorded using XML

tags. Here is an example:

Source Code Tokenizer Output

if (x < 153)

{let city="Paris";}

<tokens>

<keyword> if </keyword>

<symbol> (</symbol>

<identifier> x </identifier>

<symbol> < </symbol>

<integerConstant> 153

</integerConstant>

<symbol>) </symbol>

<symbol> { </symbol>

<keyword> let </keyword>

<identifier> city </identifier>

<symbol> = </symbol>

<stringConstant> Paris

</stringConstant>

<symbol> ; </symbol>

<symbol> } </symbol>

</tokens>

Note that in the case of string constants, the tokenizer throws away the double quote

characters. That’s intentional.

The tokenizer’s output has two ‘‘peculiarities’’ dictated by XML conventions.

First, an XML file must be enclosed in some begin and end tags, and that’s why the

<tokens> and </tokens> tags were added to the output. Second, four of the sym-

bols used in the Jack language (<, >, ", &) are also used for XML markup, and

thus they cannot appear as data in XML files. To solve the problem, we require

the tokenizer to output these tokens as <, >, ", and &, respectively.

For example, in order for the text ‘‘<symbol> < </symbol>’’ to be displayed prop-

erly in a Web browser, the source XML should be written as ‘‘<symbol> <

</symbol>.’’

Testing Your Tokenizer

m Test your tokenizer on the Square Dance and Test Array programs. There is no

need to test it on the expressionless version of the former.

220 Chapter 10

m For each source file Xxx.jack, have your tokenizer give the output file the

name XxxT.xml. Apply your tokenizer to every class file in the test programs, then

use the supplied TextComparer utility to compare the generated output to the sup-

plied .xml compare files.

m Since the output files generated by your tokenizer will have the same names and

extensions as those of the supplied compare files, we suggest putting them in separate

directories.

Stage 2: Parser

Next, implement the CompilationEngine module specified in section 10.3. Write

each method of the engine, as specified in the API, and make sure that it emits the

correct XML output. We recommend to start by writing a compilation engine that

handles everything except expressions, and test it on the expressionless Square Dance

program only. Next, extend the parser to handle expressions as well, and proceed to

test it on the Square Dance and Array Test programs.

Testing Your Parser

m Apply your CompilationEngine to the supplied test programs, then use the

supplied TextComparer utility to compare the generated output to the supplied

.xml compare files.

m Since the output files generated by your analyzer will have the same names and

extensions as those of the supplied compare files, we suggest putting them in separate

directories.

m Note that the indentation of the XML output is only for readability. Web

browsers and the supplied TextComparer utility ignore white space.

221 Compiler I: Syntax Analysis

